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We compared behavioral (n = 34+66 sessions in 2 monkeys) and 
amygdala single-unit responses (n = 107 + 193) to pure tones before 
and after one of the tones was conditioned (CS) with an aversive 
odor (US; Fig. 1a–d). The conditioning to a single stimulus mimics 

real-life exposure to aversive experiences (that is, without fine dis-
crimination training) and promotes broad generalization, a candidate 
behavioral model for anxiety1–4. We quantified conditioned prepara-
tory responses (CRs) as the increase in inhale volume in response 
to the tone (Fig. 1c and Supplementary Fig. 1a) and found wide 
generalization around the CS (P < 0.005 interaction effect of tones 
and phase, F = 2.82, degrees of freedom (df) = 8, two-way ANOVA; 
Fig. 1e,f and Supplementary Fig. 1b,c) when compared with tones 
that were paired with an appetitive odor (P < 0.05, df = 547, t test;  
Fig. 1g and Supplementary Fig. 1d) and resembling human thresh-
olds following aversive conditioning (Fig. 1h and Supplementary 
Figs. 1e and 2)5,6.

Tuning curves of single cells in the basolateral amygdala (BLA; 
(Supplementary Fig. 2) exhibited a specific characteristic after condi-
tioning: they were narrow when the preferred stimulus (PS, the tuning 
curve’s mean) was close to the CS, but wide when it was farther away 
(Fig. 2a). To quantify this center-width relationship across the popu-
lation, we binned neurons according to the distance of their post-
conditioning PS from the CS, revealing a gradual increase in width  
(P < 0.0001, F = 18.33, df = 3, ANOVA; Fig. 2b,c) that was not observed  
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Figure 1 Behavioral generalization.  
(a) Nine pure tones were presented  
six times in a pseudorandom order  
(habituation/pre-conditioning), followed  
by partial conditioning of the center tone  
to a highly aversive odor (conditioning),  
and then the nine tones were presented  
again (generalization test/post-conditioning).  
A new set of tones was selected each  
day, with equal distances from the middle  
tone (−50%, −20, −7.5, −2.5, +7.5, +20, 
+50%). (b) Reconstruction of recording 
locations in the monkey BLA complex.  
(c) The CR is the change in the inhale  
that triggers the CS tone (that is, before  
the inhale that triggers odor release)  
compared with the habituation phase.  
(d) Structural magnetic resonance  
imaging with calibrating electrodes in  
the amygdala. Scale bars represent 5 mm.  
(e) Behavioral generalization: CR for the 
different tones (quantified as the half height 
time of the inhale in ms and normalized within 
session, mean ± s.e.m., n = 64). Inset shows 
the same during habituation. (f) Data are  
presented as in e with real x axis spacing.  
(g) Absolute generalization curves for aversive 
(black) and appetitive (gray) odors  
(mean ± s.e.m.). (h) Absolute generalization 
curve for aversive (solid line, same curve as in g), 
fitted with an exponential function (dotted black line). The dashed gray line indicates the equivalent of just noticeable difference (JND) computed in human 
psychophysics (equivalent to 70.7% correct choice). The JND here was 3.8%, similar to humans subjected to the same conditioning procedure5.
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pre-conditioning (P > 0.9, F = 0.11, df = 3, ANOVA; Fig. 2b and 
Supplementary Fig. 3). The width change was correlated with the indi-
vidual shift in PS from pre- to post-conditioning (P < 0.001, r2 = 0.21,  
Pearson coefficient; Fig. 2d), indicating that the tuning curves of 
neurons that shifted their PS toward the CS became narrower and 
that those that shifted their PS away from the CS became wider. There 
were no significant changes in other response properties (P > 0.1; 
Supplementary Figs. 4–6). When we quantified basic response prop-
erties using a traditional auditory procedure (4 octaves, 300–4,800 Hz, 
40 evenly logarithmically spaced tones), we found typical one-peak-
wide tuning (Supplementary Fig. 7), indicating that BLA neurons 
are broadly tuned in normal conditions. Notably, the center-width 
relationship was maintained 24 h after learning (Supplementary  
Fig. 8), suggesting that some BLA neurons hold a 24-h representation,  
which could underlie perceptual memory in humans5.

To model this population characteristic of width change as a func-
tion of PS distance from the CS (center-width relationship), we fitted 
a linear regression to all neurons (P < 0.001, r2 = 0.32; Fig. 2e,f and 
Supplementary Fig. 9) and used the coefficients slope and y inter-
cept as parametric description of the population. In the experimental 
data, the width of behavioral generalization in individual sessions was 
indeed correlated with the slope (P < 0.001, df = 3, ANOVA, F = 22.1; 
Fig. 3a). Furthermore, this center-width relationship also accounted 
for the common finding that the BLA responds more robustly to  
the CS7, as more neurons include the CS in their tuning curve and 

therefore generate more spikes (Fig. 2f and Supplementary Fig. 10). 
It can therefore support better CS detection.

We next used the parametric description of the population to  
generate surrogate data and test two complementary approaches:  
the first examines discrimination between two stimuli based on 
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Figure 2 Tuning width changes with distance from the CS. (a) Single 
cells’ tuning curves with Gaussian fit in the generalization test (post-
conditioning; insets show the same cell during pre-conditioning).  
The further away the PS (the peak mean of the Gaussian) from the CS  
(the dashed line), the wider the tuning. (b) Tuning during generalization 
was wider with PS distance from the CS (mean ± s.e.m., ANOVA,  
F = 4.65, P = 0.003, df = 3). Inset shows tuning width taken from the 
habituation pre-conditioning (P > 0.1). (c) Percent change in width  
(left, mean ± s.e.m.) and proportion of neurons that reduced width (right), 
as a function of PS distance from CS. (d) Width change (post-pre) versus 
change in absolute PS (r2 = 0.21, P < 0.001). (e) Linear regression 
between tuning width and PS distance from CS (n = 100, P < 0.001).  
(f) Illustration of the relationship between the PS and the tuning width.
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Figure 3 Neural organization match behavioral generalization. (a) Sessions were binned into quartiles according to the behavioral generalization width 
(the s.d. of the Gaussian fit to behavior in the session). All neurons recorded in the sessions from each quartile were pooled and the population slope 
was computed (similarly to Fig. 2e), and then plotted (x axis) against the generalization width in each session (y axis). (b) d   ′ between the CS and other 
tones, averaged over all neurons (top: experimental data; bottom: surrogate data), during habituation (gray) and generalization-test (black). (c) Correlation 
between behavioral d   ′ and neural d   ′ per tone, for pre- (upper) and post-conditioning (lower). The d   ′ between a tone and all other eight tones was based 
on behavioral responses or on neural responses (and averaged over sessions), resulting in two vectors (examples shown) that were correlated. N.S., not 
significant. (d) Mean error for tone estimation with optimal linear readout of neural activity. Error surface as a function of possible slopes and y intercepts 
created of the population relationship between width and PS distance from CS (as in Fig. 2e). The mean estimation error is represented by the color scale 
in percentage change from CS. Black crosses mark the experimental data from pre- and post-conditioning (mean ± s.e., bootstrap from Fig. 2e), showing 
the decrease in error after conditioning (pre: 1.84, post: 1.31, P < 0.001, t test). (e) Change in mean error (post – pre, as in d) as a function of different 
error surfaces created by different Gaussian weighting of the error across tones, that is, the importance of each tone is weighted by its distance from the CS.  
Inset shows the actual behavioral points (from Fig. 1e,f) fitted with a Gaussian (σ = 3.64, r2 = 0.9841, P < 0.001). All error bars represent s.e.m.
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neural responses and the second examines stimulus estimation  
via readout of neural activity. For discrimination, we calculated a 
sensitivity measure between all tones (d′ between all combinations 
of two tones based on each neuron activity). There was an improve-
ment in neural d′ when comparing the CS with tones that were  
distant from it, but not when comparing with tones that were close 
to it (for both experimental and surrogate data; Fig. 3b). This was 
further evidenced when examining post- minus pre-conditioning d′  
for all stimuli combinations (Supplementary Fig. 11a,b): there was 
no improvement in d′ in close proximity to the CS (~5%, compa-
rable to human reports5,6). The reason for this lies in having more 
neurons with wide tuning and therefore shallow slope around the CS 
(Supplementary Fig. 11c). In other words, a downstream network 
that weighs all inputs equally would not improve or even deteriorate 
on discrimination around the CS, a factor that directly contributes to 
broader generalization. In addition, correlating behavioral d′ to neu-
ral d′ was significant only during generalization and only around the 
CS (P < 0.05; Fig. 3c), further linking amygdala population response 
to generalization behavior.

A reasonable assumption is that, before comparing stimuli, the 
brain first estimates the incoming stimulus. We therefore considered 
an optimal-linear readout solution. In this setup, a downstream net-
work (such as the auditory cortex) reads out amygdalar inputs with 
the assumption that all stimuli are equally important for the animal, as 
before one tone is aversively conditioned. We found that the mean esti-
mation error (ME) over all tones improved from the pre-conditioning  
population to the post-conditioning population (pre, 1.84; post, 1.31; 
P < 0.001, df = 99, t test; Fig. 3d). Furthermore, if we assume that error 
in the estimation of the CS is more important than errors in estima-
tion of other tones (because it signals danger, a highly aversive odor 
that prevents normal breathing), we can re-calculate the ME across 
tones, but weighted by a Gaussian with width that represents the  
relative importance of tones around the CS (in other words, it should 
reflect the behavioral generalization). We therefore recalculated 
the improvement in the ME from pre- to post-conditioning as a  
function of the width of weighing the ME (Fig. 3e) and found the 
width that maximized the improvement. This width closely matched 
the behavioral generalization (σ that maximizes improvement in neu-
ral estimator = 4, σ fit to behavioral generalization = 3.6, r2 = 0.9841, 
P < 0.001; Fig. 3e). In other words, the change in amygdala tuning is 
optimized for the observed behavioral generalization width.

We conclude that specific changes in BLA population code underlie 
the broad generalization and reduced discrimination seen following  
aversive conditioning5,6,8,9, and suggest that such an architecture can 
potentially underlie the extreme broad generalization observed in 
anxiety disorders1–3. The complete circuit that mediates generalization  

of more complex real-life stimuli likely involves interactions 
between the BLA and the medial geniculate thalamus10, auditory  
cortex4,11,12, prefrontal cortex13–16, hippocampus17–19 and the peri-
aqueductal gray20, as well as microcircuits in the amygdala7. Our results  
suggest that even mild changes in BLA circuitry or in its inputs can 
disrupt the balance and result in exaggerated responses to similar 
stimuli, as in anxiety.

MeThods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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oNLINe MeThods
Animals. Two male Macaca fascicularis (4–7 kg, 3–4 years) were implanted with 
a recording chamber above the amygdala under full anesthesia and aseptic condi-
tions. All surgical and experimental procedures were approved and conducted 
in accordance with the regulations of the Weizmann Institute Animal Care and 
Use Committee following NIH regulations and with AAALAC accreditation. 
Anatomical magnetic resonance imaging (MRI) scans with positioning electrodes 
were acquired before, during and after the recording period. Images were acquired 
on a 3-T MRI scanner (MAGNETOM Trio, Siemens) with a CP knee coil (Siemens). 
An MR scan was performed before surgery and used to align and guide the posi-
tioning of the chamber on the skull for each individual animal by calculating  
the relative location of the amygdala to anatomical markers of the interaural  
line, the anterior commissure and the Bregma. After surgery, we performed 
another scan with electrodes directed toward the amygdala and two to three 
observers separately inspected the images and calculated the anterior-posterior  
and lateral-medial borders of the amygdala relative to each of the electrode  
penetrations. The depth of the regions was calculated from the dura surface.

Recordings. Each day, three to six microelectrodes (0.5–1 MΩ glass/narylene-
coated tungsten, Alpha Omega or We-Sense) were lowered inside individual 
metal guides (Gauge 25xxtw; outer diameter, 0.51 mm; inner diameter, 0.41 mm; 
Cadence) into the brain using a head tower and electrode-positioning system 
(Alpha Omega). The guide was lowered to penetrate and cross the dura and stopped 
at 2–5 mm in the cortex. Electrodes were then moved independently into the 
amygdala. We first performed 8–10 mapping sessions by moving slowly and iden-
tifying electrophysiological markers of firing properties tracking the anatomical  
pathway into the amygdala (a typical path is frontal cortex → white-matter  
→ striatum → globus pallidus → white matter / Nucleus basalis of Meynert 
→ Central nucleus → BLA). Locations of recording electrodes were assessed 
and later reconstructed by alignment to multiple MRI sessions performed with 
electrodes. Electrode signals were pre-amplified, 0.3–6-kHz band-pass filtered, 
and sampled at 25 kHz, and online spike sorting was performed using a template-
based approach (Alpha Lab Pro, Alpha Omega). We allowed 30 min for the tissue 
and signal to stabilize before starting acquisition and behavioral protocol. At the 
end of the recording period, offline spike sorting was performed for all sessions 
to improve unit isolation (offline sorter, Plexon).

Behavior. Monkeys were seated in a chair with a custom-made nasal mask 
attached to their nose21,22. The mask was connected to two pressure sensors with 
different sensitivity range (1/4 inch and 1 inch H2O pressure range, AllSensors) 
that enable continuous and real-time detection of breath onset.

Each day and session, a pure tone was chosen randomly from 800–2,400 Hz 
and assigned as the CS for this session. Eight other pure tones were constructed 
with fixed frequency differences from the daily CS (differences of +2.5, +7.5, 
+20, +50, −2.5, −7.5, −20 and −50%). Tones were presented for 250 ms with 
5-ms onset and offset ramps, and delivered via Adam5 speaker (ADAM Audio 
GmbH), located 40 cm behind and to the center of the animal.

Sessions started with a habituation (pre-conditioning) phase: six randomly 
interleaved presentations of each of the nine tones followed by an acquisition 
and conditioning phase in which only the CS was presented and paired with 
an aversive odor (15 trials of partial reinforcement, 2:1 ratio). We used a 1:20  
solution of propionic acid distilled in mineral oil (Sigma Aldrich), as propionic 
acid stimulates olfactory and trigeminal receptors in the nose and is highly 
aversive to animals21–23. To test that aversive conditioning indeed results in 
wider generalization curves compared with pleasant conditioning, we performed  
several separate behavioral sessions in which the CS was followed by an appe-
titive odor (banana extract distilled in mineral oil, Tevaoz). Because distinct  
populations and microcircuits in the amygdala support positive or negative 
value24,25 and fear or safety22,26–28, coding for appetitive and aversive stimuli 
can coexist while differing in generalization patterns.

Each tone was triggered by spontaneous breath onsets, and the odor (US) was 
released at the following breath onset (but not before 1 s elapsed)21,22. The last 
phase, the generalization test (post-conditioning), included the presentation of 
all 9 tones again in a randomly interleaved manner, similar to the habituation, 
but with the CS partially reinforced to avoid extinction and maintain natural 
generalization. The following day, extinction was performed before the new 
session started, to minimize crossover.

The preparatory CR was measured as the change in the inhale breath 
that triggered the tone. We used the half height time of this inhale, its  
total volume, and its peak as different behavioral measures to test for 
robustness of results. These measures were derived per trial and normal-
ized within session (over spontaneous breaths, that is, breaths during  
the intertrial interval that were not followed by tones or odors) to  
account for day-to-day fluctuations in the placement of the mask and  
general state.

Behavioral generalization functions were computed separately pre- and 
post-conditioning by fitting responses to all 9 tones with a Gaussian using a 
nonlinear-least-squares optimization procedure (Matlab, Mathworks).

There were 100 aversive sessions (66/34 per monkey) combined with  
electrophysiology and 14 (9/5) appetitive control behavioral sessions. Out 
of the 100, 64 had an r 2 > 0.4 for the Gaussian fit to behavior (Fig. 1e and 
Supplementary Fig. 1).

For JND-like estimation (Fig. 1h and Supplementary Fig. 1e), an exponent 
was fitted to the one-sided (absolute) generalization curve and the point that 
corresponded to 70.7% of the full response was extracted. This is equivalent to 
the converging point of the adaptive procedure that was used in previous studies 
to extract the JND in humans5,6.

data analysis. Firing rate was taken from the first 500 ms following the tone; 
thus, it is a preparatory period that does not include direct sensory stimulus 
(after the tone and before the expected time of odor release). Tuning curves 
were computed separately pre- and post-conditioning by fitting responses to 
all nine tones with a Gaussian29 using a nonlinear-least-squares optimiza-
tion procedure (Matlab, Mathworks). Of 300 recorded neurons from the BLA  
complex (107 of 193 per monkey), 100 had goodness of fit of r2 > 0.4 during post-
conditioning and were considered tuned neurons for further analyses (but see 
Supplementary Fig. 9 for robustness of results using more strict or more relaxed 
criteria), and 70 of them were tuned (r2 > 0.4) both pre- and post-conditioning  
(Fig. 2b,d). The width of the tuning curve was defined as the sigma (σ) of the 
Gaussian-fit and the preferred-stimulus (PS) as its mean. This approach to 
estimate tuning width confirmed previous observations that BLA neurons are 
broadly tuned in normal conditions30, and also confirmed that there were no 
significant changes in tonic activity31 (Supplementary Fig. 4), in the overall 
distribution of PS (Supplementary Fig. 5) or appearance of a second peak around 
the CS (Supplementary Fig. 6).

In several sessions, we included a complete traditional auditory test before 
the procedure (n = 24). This included a sequence of 40 pure tones evenly spaced 
in logarithmic scale and spanning 4 octaves from 300–4,800 Hz. Each tone was 
repeated ten times in a pseudorandom order and lasted 200 ms with a rise/fall 
ramp of 10 ms. This test had two goals. First, it tests for neuronal response after 
24 h. Second, it is a standard auditory test that allows homogenous unbiased 
sampling of auditory space. The firing rate during the passive listening of the 
tone sequence was calculated, and a tuning curve was computed if the firing 
rate was significantly above baseline by 2 s.d. for at least 1 of the 40 tones. The 
best frequency (BF), or PS, was determined as the frequency evoking maximal 
firing rate. The distance between the PS from the CS was calculated by using 
the CS from the previous day. Bandwidth was determined as the tuning width 
(expressed in octaves) at which the tuning curve falls below 50% of the maximal 
firing rate at BF32.

Surrogate data was synthesized on the basis of the correlations we found 
between the generalization curves’ PS and width (Fig. 2e). We generated neurons 
with Gaussian tuning curves of mean (PS) homogenously distributed between 
−100 to 100 (to avoid edge effects for the range we used in our procedure), and 
σ (width) matching the expected width from the linear relationship we found 
in the real data (Fig. 2e). For each neuron, we generated trials with firing rates 
from a Poisson distribution where λ is the expected mean from the Gaussian 
tuning curve.

To evaluate discrimination, we calculated the d′, a non-parametric sensitivity 
index, for each neuron 
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where s1 and s2 are two different tones, µ is the mean firing rate and σ is its s.d. 
We computed it for real data and for the surrogate data. We then calculated the 
change in sensitivity by taking the difference in d′ between generalization test 
phase to habituation phase (represented in the color scale; Fig. 3c).

Fisher Information (FI)33, a measure of the amount of information about the 
stimulus encoded in the neural response, was calculated using the following 
equation (for the case of Gaussian distribution) 

FI s
f s
f sa

N
a

a
( )

( ( ))
( )

= ′

=
∑

1

2

 
where a is a specific neuron and f(s) is the neuron’s tuning function (Gaussian in 
this case). Hence, each neuron contributes to the FI proportional to the square 
of its tuning curve’s slope and inversely proportional to the average firing rate 
for a particular stimulus. Assuming independence between neurons, the total 
FI is the sum of all the neurons’ contribution (number of neurons was kept fixed 
for all purposes; Fig. 3d).

To see that the neural d′ is indeed directly related to the behavior, we calcu-
lated d′ for the behavioral data as well (using conditioned responses from the 
different trials). For each tone, we obtained d′ between it and all other tones  
(a vector of length 8 per each tone), both for the behavioral data and for the 
neural data. These two vectors were correlated and averaged across sessions, 
resulting in a correlation-coefficient between neural and behavioral d′ for each 
tone, and for pre- and post-conditioning (Fig. 3e).

For tone estimation, we used an optimal linear readout (OLE)34,35 computed 
on all neurons and stimuli. An OLE is an estimator of the form 

ŝ fr W
i

N

i i=
=
∑

1  
where fri is neuron’s i response (its firing rate) in a specific trial and Wi is the 
weight given to this neuron. OLE is a set of linear weights W that minimizes the 
mean Euclidean error (ME) with a uniform prior p(s) over all stimuli. 
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2

The set of optimal linear weights W is given by C−1U, where  
c f s f s f sij i j x ij i s= +( ) ( ) ( )d  and u sf si i s= ( ) .

In the current case, a specific neuron’s response depends on its Gaussian-like 
tuning curve, and hence a response to a particular stimulus s is 

fr fr max( ) _ *

( )

*s
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=
−

−

e

2

2 2s  

where fr_max is the maximal firing rate, PS is the preferred-stimulus of the 
neuron, and σ is the width of the tuning curve.

In the surrogate data we synthesized, the relationship between PS and σ 
(width) depends on the regression line, we found in the real data; that is, on the 
slope and y intercept of this regression (Fig. 2e).

For each combination of slope and y-intercept we calculated the ME in 
tone estimation (represented in the color scale; Fig. 3f). The actual slope and  
y intercept from pre- and post-conditioning are marked, showing a decrease  
in mean error for the population characteristics in the generalization phase.

Next, the difference in ME between the pre-conditioning population and the 
post-conditioning one was re-calculated for different error surfaces, each created 
by using different priors for averaging across stimuli. Unlike the uniform prior 

used above (Fig. 3f), the different priors were Gaussians centered on the CS but 
with different widths, namely different σ. 
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The underlying assumption here is that it is more important to have correct esti-
mation for the CS, with a decaying function around it. We used σ ranging from 
1 to 10 in steps of 0.5, and for each matching error surface, plotted the improve-
ment in error from pre- to post-conditioning revealing a convex function of σ 
(minima = 4; Fig. 3g). To compare this neural measure to behavior, we separately 
fitted a Gaussian to the behavioral generalization data (Figs. 1e,f and 3g).

Auditory experiments for basic tuning properties. Animals passively listened 
to a sequence of 40 pure tones evenly spaced in logarithmic scale and spanning 
four octaves from 300–4,800 Hz. The tones were delivered via Adam5 speaker 
(ADAM Audio GmbH), located 40 cm behind and to the center of the animal. 
Each tone was repeated 30 times in a pseudorandom order and lasted 200 ms 
with a rise/fall ramp of 10 ms. Inter-tone interval was of 200 ms.

Units were classified responsive if the firing rate during tones was signifi-
cantly above inter-tone interval baseline by 2 s.d. for at least one of the tones. 
Spectro-temporal receptive fields (STRFs) and tuning curves were constructed 
from responses to the tonal stimuli by computing peristimulus time histograms. 
Suppressive effects of tones were very rare, possibly because of the low back-
ground firing rate of amygdalar units. Overall, 343 single units were recorded, 
126 were classified responsive, and 99 possessed a tuning curve.

The BF was determined as the frequency that evoked the maximal firing rate. 
Bandwidth was determined as the tuning width (expressed in octaves) at which 
the tuning curve fell below 50% of the maximal firing rate32. The latency, that 
is, the initiation of the response to the BF tone, was calculated as the first bin 
after tone presentation in which the number of spikes per second was above  
2 s.d. from baseline. To do so, the firing rate of each unit was Z scored by  
Z = (RA − RB)/SB, where RA is the firing rate in a given bin after the presentation 
of the tone, RB is the mean firing rate for the baseline period immediately before  
the presentation of the auditory stimulus, and SB is the s.d. of the firing rate 
during the baseline period. Next, Z scores for each unit were averaged across  
30 trials for the BF and each time bin. Finally, the time course of the mean Z score 
was plotted as a function of time. After the response was initiated, the cessation 
of the response was calculated as the time in which the spike count was no longer 
statistically different from baseline.

A Supplementary methods checklist is available.
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