Publications by Author: Agnès Delaunay-Moisan

T

Toledano, Michel B, Agnès Delaunay-Moisan, Caryn E Outten, and Aeid Igbaria. 2013. “Functions and Cellular Compartmentation of the Thioredoxin and Glutathione Pathways in Yeast”. Antioxidants & Redox Signaling 18 (13): 1699-1711.

Significance: The thioredoxin (TRX) and glutathione (GSH) pathways are universally conserved thiol-reductase systems that drive an array of cellular functions involving reversible disulfide formation. Here we consider these pathways in Saccharomyces cerevisiae, focusing on their cell compartment-specific functions, as well as the mechanisms that explain extreme differences of redox states between compartments. Recent Advances: Recent work leads to a model in which the yeast TRX and GSH pathways are not redundant, in contrast to Escherichia coli. The cytosol possesses full sets of both pathways, of which the TRX pathway is dominant, while the GSH pathway acts as back up of the former. The mitochondrial matrix also possesses entire sets of both pathways, in which the GSH pathway has major role in redox control. In both compartments, GSH has also nonredox functions in iron metabolism, essential for viability. The endoplasmic reticulum (ER) and mitochondrial intermembrane space (IMS) are sites of intense thiol oxidation, but except GSH lack thiol-reductase pathways. Critical Issues: What are the thiol-redox links between compartments? Mitochondria are totally independent, and insulated from the other compartments. The cytosol is also totally independent, but also provides reducing power to the ER and IMS, possibly by ways of reduced and oxidized GSH entering and exiting these compartments. Future Directions: Identifying the mechanisms regulating fluxes of GSH and oxidized glutathione between cytosol and ER, IMS, and possibly also peroxisomes, vacuole is needed to establish the proposed model of eukaryotic thiol-redox homeostasis, which should facilitate exploration of this system in mammals and plants. © 2013 Mary Ann Liebert, Inc.

S

Sicari, Daria, Agnès Delaunay-Moisan, Laurent Combettes, Eric Chevet, and Aeid Igbaria. 2020. “A Guide to Assessing Endoplasmic Reticulum Homeostasis and Stress in Mammalian Systems”. The FEBS Journal 287 (1): 27-42.

The endoplasmic reticulum (ER) is a multifunctional organelle that constitutes the entry into the secretory pathway. The ER contributes to the maintenance of cellular calcium homeostasis, lipid synthesis and productive secretory, and transmembrane protein folding. Physiological, chemical, and pathological factors that compromise ER homeostasis lead to endoplasmic reticulum stress (ER stress). To cope with this situation, cells activate an adaptive signaling pathway termed the unfolded protein response (UPR) that aims at restoring ER homeostasis. The UPR is transduced through post-translational, translational, post-transcriptional, and transcriptional mechanisms initiated by three ER-resident sensors, inositol-requiring protein 1α, activating transcription factor 6α, and PRKR-like endoplasmic reticulum kinase. Determining the in and out of ER homeostasis control and UPR activation still represents a challenge for the community. Hence, standardized criteria and methodologies need to be proposed for monitoring ER homeostasis and ER stress in different model systems. Here, we summarize the pathways that are activated during ER stress and provide approaches aimed at assess ER homeostasis and stress in vitro and in vivo mammalian systems that can be used by researchers to plan and interpret experiments. We recommend the use of multiple assays to verify ER stress because no individual assay is guaranteed to be the most appropriate one. © 2019 Federation of European Biochemical Societies

P

Ponsero, Alise J, Aeid Igbaria, Maxwell A Darch, Samia Miled, Caryn E Outten, Jakob R Winther, Gael Palais, Benoit D’autreaux, Agnès Delaunay-Moisan, and Michel B Toledano. 2017. “Endoplasmic Reticulum Transport of Glutathione by Sec61 Is Regulated by Ero1 and Bip”. Molecular Cell 67 (6): 962-73.

In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import and Ero1 activation. The ER protein-conducting channel is permeable to small molecules, provided the driving force of a concentration gradient. Ponsero et al. show that cytosol-to-ER transport of glutathione proceeds via facilitated diffusion through Sec61. Upon import, glutathione activates Ero1 by reduction, causing Bip oxidation and inhibition of glutathione transport. Coupling of glutathione ER import to Ero1 activation provides a basis for glutathione ER redox poise maintenance. © 2017 Elsevier Inc.

K

Kumar, Chitranshu, Aeid Igbaria, Benoit D autreaux, Anne-Ga elle Planson, Christophe Junot, Emmanuel Godat, Anand K Bachhawat, Agnès Delaunay-Moisan, and Michel B Toledano. 2011. “Glutathione Revisited: A Vital Function in Iron Metabolism and Ancillary Role in Thiol-Redox Control”. The EMBO Journal 30 (10): 2044-56.

Glutathione contributes to thiol-redox control and to extra-mitochondrial irong-sulphur cluster (ISC) maturation. To determine the physiological importance of these functions and sort out those that account for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both conditions triggered an intense iron starvation-like response and impaired the activity of extra-mitochondrial ISC enzymes but did not impact thiol-redox maintenance, except for high glutathione levels that altered oxidative protein folding in the endoplasmic reticulum. While iron partially rescued the ISC maturation and growth defects of GSH-depleted cells, genetic experiments indicated that unlike thioredoxin, glutathione could not support by itself the thiol-redox duties of the cell. We propose that glutathione is essential by its requirement in ISC assembly, but only serves as a thioredoxin backup in cytosolic thiol-redox maintenance. Glutathione-high physiological levels are thus meant to insulate its cytosolic function in iron metabolism from variations of its concentration during redox stresses, a model challenging the traditional view of it as prime actor in thiol-redox control. © 2011 European Molecular Biology Organization